
Best Practices for
Eliminating Fragmentation
with Modern Storage
Technologies
(SAN/RAID/Virtualization)

White PaPer

Best Practices for eliminating fragmentation
with modern storage technologies

Table of Contents

1. Preface 1

2. Overview 1

3. From A to Z; breaking down the I/O path 2

4. Defragmentation and On-Disk Technologies (HDD) 4

5. Defragmentation and Solid State Storage (SSD) 6

6. Defragmenting RAID 7

7. Defragmenting Virtual Hard Disks (VHD, VMDK) 10

8. Defragmentation and Storage Area Networks (SANs) 14

9. Defragmenting Network Attached Storage (NAS) 21

CONCLUSION 22

Appendix A 23

Appendix B 25

Best Practices for eliminating fragmentation
with modern storage technologies

I. Preface

The definitions and explanations of storage technologies provided throughout this report

focus on their specific use in the paper. There are new advancements and variations of these

technologies beyond the scope of this paper’s purpose and therefore, are not covered. This

paper is also focused on Microsoft Windows and the Windows file systems.

II. Overview

Due to the significant complexity and breadth of the software and hardware used in modern

storage environments, from disk-level technologies to massively scalable network storage

facilities, there are many myths and misconceptions regarding the continuing need for a

solution to fragmentation. Although, it is understandably easy to accept many of them as

replacements for eliminating fragmentation as many seek to solve the same issue, the fact

remains that the disk is the weak link.

From the time non-volatile storage was introduced decades ago, there have been layers

of abstraction between the users/applications and those devices. The fact that modern

datacenters go well beyond the single direct attached drive(s), and employ advanced storage

infrastructures that add additional layers of abstraction, does not eliminate the need to solve

fragmentation.

In short, no matter how or where you store your data, solving file fragmentation is as vital for

peak system performance and reliability as it has ever been.

The purpose of this paper is to briefly define these new storage technologies, how they

contribute to I/O throughput, and how the various new solutions can work together with

solutions to eliminate fragmentation for optimal disk subsystem performance.

As part of a discussion of the relevance of fragmentation and best practices for removing it,

the two principal approaches for eliminating fragmentation must also be covered.

Historically the solution has been to allow the file system to generate the fragmentation and

then, sometime thereafter, run a process to consolidate files and/or free space on the file

system. A new and modern approach is to actually prevent file fragmentation from occurring

in the first place, largely obviating the need for moving files after the fact. Both designs will be

discussed, as they relate to the storage technologies covered.

If there is one key piece of data to remember after reading this document, it is that a disk

file system is abstracted1 from the actual underlying hardware and software that make up

the storage subsystem. In other words, those same underlying disk systems (software and

hardware) have no knowledge of what the file system is doing.

1

1. In the context used here it means: separated from other real or virtual components.

Regular jobs to

defragment your disks

will have a positive impact

on performance. – HP

2
Best Practices for eliminating fragmentation
with modern storage technologies

The first section of this paper will follow I/O from start to finish through some of the various

layers of abstraction. The remainder of the paper will break out the various subtopics in detail,

and offer recommendations and best practices for each.

III. From A to Z; breaking down the I/O path

Before covering complicated storage

infrastructures, it’s important to start

from the simplest storage environment,

the single direct-attached, hard disk

drive.

In the beginning:

With any non-cached disk I/O2 activity

there is always a “block” involved. A

block (sometimes referred to as a

sector) is the smallest unit in which data

is transferred to and from a disk device. A block is created by the disk drive manufacturer in a

low-level format. It is a physical location, of a set size (typically 512 bytes), which has a unique

address from any other block on the disk. No matter what other technologies are layered on

top of the disk to access data, the block always exists as the smallest indivisible unit.

For a disk device to connect into the

computer’s system bus, it must use

a host bus adaptor (HBA). That HBA

is often built in to the motherboard for

SATA and EIDE/PATA based disks.

The HBA is hardware that extends

(i.e., the adaptor part of the name)

the controlling computer’s (the host)

circuitry (the bus) to other, typically

storage, devices. The use of an HBA

requires a software driver be loaded

into the operating system.

The disk controller describes the firmware that controls a disk drive. It interprets a Logical

Block Address (LBA) to locate data on a “block” (sector) level. Disk controllers require

that a software device driver be loaded into the operating system to support two way

communications in the form of I/O Request Packets3 (IRP).

The file system, with respect to disks, is a high-level format mapping of logical units known

as clusters. The file system uses an index to assign these logical clusters to file objects (e.g.

2. I/O (input/Output): refers to the data transferred from one device to another.
3. Kernel mode communication structure between device drivers and the operating system.

Figure1.0: Sectors on a disk formed into a 2KB cluster

i /o manager

Figure1.1: I/O path from OS to physical disk

3
Best Practices for eliminating fragmentation
with modern storage technologies

report.doc). In NTFS this data is stored in an index file called the Master File Table. Clusters

are mapped to files by recording the logical cluster numbers (LCNs), in which the file is stored,

in the index record for a given file4. A good analogy would be the index in the back of a book,

directing you to the page number where a keyword is used.

A file system, such as NTFS, operates in Kernel mode5 in the operating system. For each

“logical” fragment in the file system, a separate disk I/O must be generated and passed on

to the disk subsystem. Disk subsystems, no matter how intelligent the controller, operate

at the block level and cannot recognize a file object. Therefore they cannot re-assemble or

pool incoming I/O requests related to logical fragments and minimize the amount of physical

motion. Here is the I/O path:

I/O Request:
• Application requests to read a file

• The request is passed to File System

• The File System maps the file clusters to an LBA and
passes it to the driver (HBA)

• HBA driver maps LBA to particular physical disk in array

• Physical disk onboard controller maps the request to
a specific block

The request then traverses this path back up, in sequence without skipping a step,

to the application.

I/O RetRIeval:
• Physical disk acquires specific blocks

• Disk array controller acquires blocks from disk

• Blocks are mapped to LBA’s and passed to the file system

• File system maps LBA to file clusters and passes to application

• Application receives file

“ I think defrag is an excellent tool for keeping your performance and the health

of your drive up to par. So the larger these drives get the more data people are

storing on them, and the more you store on them, you edit and save and pull it

back up another day. It sort of gets spread out across the hard drive… so when

you defrag you are pulling all of these files closer together. … he doesn’t have to

search over this 750G drive to find pieces of a file, they’re all aligned….”

 – Joni Clark, Product Manager, Seagate
(as heard on the Computer Outlook Radio Show)

4. For a detailed explanation, see How NTFS Reads a File in the Reference section at the end of this paper.
5. The kernel defines the trusted core system component responsible for managing hardware operation requests (e.g. process time, disk and memory management). To run in kernel “mode”

defines the execution of instructions at this level (ring 0).

The last two kernel

mode steps for I/O

retrieval are generally

accessed direct from

memory (DMA) into/out of

the user buffer. However,

the last step does typically

occur on Windows, due

to the design of Cache

Manager.

User mode

Kernel mode

User mode

Kernel mode

4
Best Practices for eliminating fragmentation
with modern storage technologies

IV. Defragmentation and on-disk technologies (HDD)

There are a number of technologies applied in modern hard disk drives (HDD), designed to

improve data read and write performance. In this section we’ll address them one at a time,

and go into detail in each subsection.

a. Queuing and Seek optimization:

There are a number of disk level algorithms to minimize the impact of physical limitations

such as rotational latency (waiting for the disk to spin back around). They include variants of

elevator-seeking and shortest-seek-first. These algorithms leverage the disk buffer, prioritizing

retrieval of data physically closest, by measure of the data’s cylindrical location and/or how

close the requested data is to the current location of the disk head6.

Seek algorithm optimizations tend to only care about minimizing head movement/rotational

latency. As a result, an I/O in another part of the disk may wait for many seconds to be

serviced, causing serious delays in getting data back to an application’s now superseded

request. Add the scattering of data (fragmentation) to that equation and an application may

wait for a very long time to get the data it wants, while other applications get their data right

away. That can then lead to that I/O starved application eventually getting full service from

the disk, to the now detriment of some other more recent and more important application’s

request.

One of the next considerations that might come to mind is doesn’t “disk queuing” eliminate

the need to defrag?

Native Command Queuing (NCQ) is a technology that allows a SATA drive to re-prioritize and

queue disk requests while completing others. It’s kind of like multi-tasking at the disk level.

The big benefit is that it excludes the CPU from having to be active in backlogs from what is

the slowest component in the modern PC. SCSI disks have led the way, and continue to do

so, supporting up to 256 queued commands.

The answer to whether seek optimization and disk queuing eliminate the need to defragment,

is simply no. While seek algorithms improve on rote data retrieval methods of the past, they

cannot account for fragmentation as they are “block” based. They will organize and prioritize

data retrieval based on physical location of data blocks, not per file object. Queuing will

improve on prioritization strategies and improve overall seek time for asynchronous I/O, and

synchronous I/O from multiple separate and simultaneous threads. However, queuing does

not address fragmentation, as it too is block based and does not optimize activity for

a particular file.

6. For more information on disk architecture see The Shortcut Guide to Managing Disk Fragmentation in the reference section.

5
Best Practices for eliminating fragmentation
with modern storage technologies

B. diSk CaChe:

Caches are commonly available on the disk/disk array controller. This is a volatile memory,

requiring constant power, through which data is stored temporarily (buffered en route to being

written to the disk (write-back).

The cache can be of benefit for re-reading data that has been loaded into the cache

(either from a recent read or write), as the cache duplicates data found on the disk platter.

Reading from cache improves performance as it eliminates the need to retrieve data

from the disk platter.

Many controllers also offer read-ahead (pre-fetch)

caching for sequential I/O. This attempts to pre-read

blocks from the disk and place them into the non-volatile

storage, ahead of the actual system request. Data

located in physically non-contiguous blocks (i.e. due to

file fragmentation) impedes read-ahead technologies,

since disk devices do not map blocks to file objects.

As a result they do not read in the proper data. For this

reason, file defragmentation will aid controller read-

ahead efforts.

The primary purpose for this on-drive cache is

sequential read improvement; it does not offer significant

benefit to random reads.

It should also be noted that the operating system

maintains a system cache as well. This cache is housed

in the computer’s system RAM and allows an operating system to consolidate I/Os in a buffer

(write-back cache), making for more efficient I/O. Recently accessed data can be retrieved

from this cache, without need to request it from the disk, though of course to be read into the

cache those fragments must first be read off the disk.

C. eleCtromeChaniCal:

Serial ATA (SATA) drives are the new standard for desktop PCs and most laptops, while SCSI

has been the mainstay on servers for over a decade, and Fibre Channel (FC) is becoming

more common in SAN environments.

Today’s fastest disks spin at 15,000 RPM with average seek times on these high-end drives

measured in the mid 3 milliseconds7. While this is a great improvement over the 5200 RPM

disks of the 1990’s, it’s a far cry from the operational speed of CPU and memory which have

improved at a far greater pace and are now measured in nanoseconds.

7. Disk speed only affects rotational latency. 15K drives have a rotational latency of 8msecs; 1000/((15000/60)/2). Seek time is the average time it takes to move the head ½ the radius of the
platter. Nowadays, vendors enhance seek times using seek optimization and caching to offset the actual time required by the heads to move ½ the radius of the platter.

Figure1.2: System Cache on
Windows Server

6
Best Practices for eliminating fragmentation
with modern storage technologies

High end SATA, serial attached SCSI (SAS) and Fibre Channel attached disks transfer rates

move data through at a rate of 300MB/sec – 400MB/sec. Given that CPUs and memory can

process 14 GB/sec+ of data (processor-to-system bandwidth), disks simply cannot keep up.

Keep in mind that the reported transfer rates already include all the technologies that optimize

data access mentioned above. Some disk models are faster than others, and some interfaces

allow greater throughput than others. The performance trade-off is typically price. Faster

drives usually means higher costs.

Summary:

Queuing and disk seek algorithms do afford improvements for inherent mechanical

performance restrictions, but they simply do not make up for the fact that these devices

cannot keep up with electronic speeds. If all data could be permanently maintained in high-

speed RAM, fragmentation would not be the performance issue it is, but price-per-GB of RAM

isn’t affordable or appropriate for long-term or mass storage. It should also be noted that huge

caches still do not help with file writes, which suffer in a fragmented free space environment.

When a “bottleneck” in a process (any process) is restricted, the entire process is significantly

impeded. The greatest gain to be realized is the resolution of that bottleneck. Arguments

that “today’s disks are faster” and hence fragmentation is not an issue, hold no validity. Based

on transfer rates alone, one can quickly conclude that the disk drive is still the weak link in

the chain.

Recommendation: Prevent Fragmentation at the file system level, and use automatic

background defragmentation for full performance benefit on SATA/SCSI/EIDE(IDE) hard disks.

V. Defragmentation and solid state storage

hyBrid hard driveS:

Hybrid Hard Drives (HHD) offer a non-volatile RAM (NVRAM), in typically larger capacities than

formerly available with on-disk caches. The added benefit is that the added memory capacity

does not require a constant power source.

Hybrid drives can improve data access by essentially caching data on the attached NVRAM.

However, the NVRAM is limited in size and durability, and data prepended to the NVRAM

relies on a predictive algorithm that does well for commonly used data, but cannot account

for all activity. Disk platter access is still necessary, even on only moderately active systems.

Spinning up a “resting” disk will extend total seek time, more than disks that are not

spun-down.

7
Best Practices for eliminating fragmentation
with modern storage technologies

Solid State driveS:

When solid state storage implements a hard disk drive interface (e.g. SATA), it is known as a

Solid State Drive (SSD). NAND Flash is the predominant technology used in SSD, and also

used in pocket storage devices like USB attached jump drives.

Solid state disks do not suffer from electromechanical read latency as do rotating magnetic

media. While asynchronous read operations are efficient (hence fragmentation of files tends to

be less serious), SSD/Flash is not the best choice for sequential I/O or heavy write activating

due to erase-on-write requirements. Fragmented free space will dramatically impact write

speed on these devices. This is true for both multi-level cell (MLC) and single-level cell (SLC)

NAND Flash drives.

Recommendation: Defragment Hybrid drives on an occasional basis (e.g. once a day or

once a week). Make sure to use an advanced tool that focuses on performance improvement,

thereby not causing excess write activity to the NVRAM to achieve a “pretty disk display”.

Optimize SSD disks with special programs designed specifically for NAND Flash (e.g.

HyperFast®). Such tools will emphasize free space consolidation and defragment files to the

degree they improve SSD performance. Tools built for HDD will generate unnecessary activity

on SSDs, and are not recommended.

VI. Defragmenting RAID

Redundant Array of Inexpensive Disks (RAID) describes a software technology that pools

multiple (two or more) physical storage drives for the purpose of data performance and in

most definitions, data redundancy in the event of a physical device failure.

raid 5 Striping

Figure1.3: 1MB file in one logical I/O, evenly striped (w/parity) across 5 disks

Multiple disks pooled together in a RAID array connect in to the host operating system the

same way a single disk would, via a host bus adaptor. I/O in disk subsystems, wherein RAID

“Just as with a single disk,

files stored on RAID arrays

can become fragmented,

resulting in longer seek

times during I/O operations.”

 – Microsoft

8
Best Practices for eliminating fragmentation
with modern storage technologies

is used, follows the same path as the single disk, but the data and the I/O load are physically

distributed over many disks.

While a RAID array may be contained inside a computer system casing, it is more common

for server operating systems to have the drives kept externally in disk arrays – especially when

more than a half dozen or so drives are pooled together.

A disk array is a physical storage container with power supply that contains multiple hard

disks, a disk controller card for the array, with a cache, and as a standard, offers disk striping

and fault tolerance (i.e. RAID software).

raid 5 Striping

Figure1.4: 1MB “File A” unevenly written as simultaneous I/O writes are coalesced

Fragmentation degrades the performance of a RAID environment due to the unnecessary

generation of I/Os issued by the file system. All these numerous and separate I/Os are then

passed to the RAID controller to process (read or write). The RAID controller, unaware that the

multiple I/Os all map to the same file, treats each I/O as a separate entity. A file object split into

multiple I/Os is more likely to be interspersed with other disk I/O in a RAID stripe, than if the file

I/O delivered to the controller was single.

Defragmenting files at the file system level and consolidating data into a single I/O can,

depending on the RAID controller, better fill the entire (e.g. 64K) chunk (RAID stripe) size with

that I/O; now taking full advantage of the RAID.

If a logically fragmented file, does get interspersed with other I/O (due to the fact that multiple

I/Os have to be generated to write a file), it is theoretically possible that the data for that file is

not evenly spread across the disks. Following that theory, the possibility of uneven file writes is

increased on busier disks using smaller stripe/chunk sizes.

Figures 1.3 and 1.4 depict what can occur. This is for illustrative purposes only, as each stripe

can, of course, contain data from multiple files all combined into a single stripe.

9
Best Practices for eliminating fragmentation
with modern storage technologies

Rewriting of parity data is possible with disk defragmentation. For that reason, it is important

to have I/O-sensitive defragmentation technology. This will prevent I/O overhead at the

controller cache.

The type of distribution methodology also makes an impact in the layout of data. Proprietary

metadata in the form of a tree structure may be used to map out data within a storage

subsystem. In other cases simple correlations are created. Where vendors claim that there is

no “fragmentation” this refers to the metadata (or other methodology) used for file layout within

the storage system. This does not refer to fragmentation at the disk file system level (NTFS).

advanCed/intelligent ControllerS and CaChing:

In a RAID device, read-ahead and write-back caching is also done at a block (not file) level.

Read-ahead is valuable for sequential reads, and advanced technologies apply read-ahead in

an intelligent manner. As was noted earlier, the issue is that if the file object requested by the

operating system is not block-contiguous, read-ahead caching will not operate effectively.

Write-coalescing describes technology used by the RAID software’s controller cache to

buffer large sequential incoming data, (e.g. in a FIFO method), until an entire stripe’s worth of

information is gathered. The buffer also supports the generation of parity data prior to writing,

in order to avoid a mechanical penalty for writing parity on-the-fly. The buffer is; of course,

block based, waiting for enough I/O write data before it stripes the data (and parity) across the

disks. It does not natively coalesce data from a single given file object. Defragmented files and

free space can improve the performance and viability of write coalescing, by increasing the

likelihood of sequential I/O writes.

adjuSting Queue depth:

While disk level queue-depth mitigates taxation of the CPU to some degree, it still bottlenecks

the disk itself, so one must be careful when modifying this function. Done correctly it can

increase performance, but done improperly it can be damaging and impact available

resources for other devices on that same HBA, decreasing the throughput for those devices.

As an example, it is highly recommended to monitor and adjust SCSI queue depth in virtual

machine environments to accommodate the increased disk activity that multiple VMs

generate. Setting the value too high, however, can expose data in queue buffers to corruption,

SCSI time-outs, and cache flushes.

Summary:

For defragmentation to be of benefit, it is a mistake to think that the end result must provide a

one-to-one logical-to-physical correlation. In the case of fault tolerant or I/O distribution efforts

…due to the sequential

nature of backup data,

prefetching is often ben-

eficial. Restore operations

(reads) will profit from the

use of prefetching, provid-

ed that the file system is not

too badly fragmented…

 – EMC

Physical members [disks]

in the RAID environment

are not read or written

to directly by an applica-

tion. Even the Windows

file system sees it as one

single “logical” drive. This

logical drive has (LCN)

logical cluster numbering

just like any other volume

supported under Windows.

… fragmentation on this

logical drive will have a

substantial negative perfor-

mance effect

 – Diskeeper Corp.

10
Best Practices for eliminating fragmentation
with modern storage technologies

of RAID or virtualization, it is standard for the data to be physically split across multiple disks.

Defragmentation never forces a one-to-one mapping, nor does it need to in order to provide

benefit. However, a single I/O delivered to the RAID controller, for a given file, is more likely to

be optimally striped across the RAID disks than multiple I/Os to a file interspersed with other

file I/O.

Recommendation: Prevent Fragmentation at the file system level, and use automatic

background defragmentation for full performance benefit on RAID arrays.

VII. Defragmenting virtual machines/systems (virtual hard disks)

Machine virtualization describes the creation of one or more isolated virtual instances of a

“guest” operating system either on top of a “host” operating system (Hosted Architecture) or

directly on top of a specialized thin software layer called a hypervisor (Hypervisor/Bare-Metal

Architecture).

In either architecture, the host

system’s virtualization of other

operating systems is accomplished

by software, proprietary to the

vendor (e.g. Hyper-V™, ESX™),

which resides between the physical

hardware (CPU, memory, etc.) and

the “guest” operating systems. Each

guest or host operating system runs

its own applications independently,

as if it were the only system operating on the hardware.

Popular virtualization platforms such as those from VMware, Citrix, Microsoft, and others offer

a variety of proprietary “virtual disks” that can be used with their platforms. The choice of

virtual disks is a decision made on business needs, but does not affect the performance loss

associated with fragmentation. However, the choice of virtual disk does affect how you need

to solve fragmentation.

uSing reSourCe SenSitive teChnologieS to throttle aCtivity:

One of the technologies offered by defragmenters is resource (I/O, CPU) throttling. The

concept here is to monitor, for example, disk I/O traffic, and throttle application related

disk activity (i.e. defrag) until the I/O pipeline is free. Collection of resource data, such as

I/O queues, is dependent on counters returned from the operating system on which the

application is installed. In cases where multiple virtualized operating systems share common

If an application has to

issue multiple “unnecessary”

I/O requests, as in the case

of fragmentation, not only is

the processor kept busier

than needed, but once the

I/O request has been issued,

the RAID hardware/software

must process it and deter-

mine which physical member

to direct the I/O request.

 – Diskeeper Corp.

virtual maChineS

11
Best Practices for eliminating fragmentation
with modern storage technologies

hardware (disks), as in a VMware’s ESX/vSphere or Microsoft’s Hyper-V, I/O throttling

techniques will not function appropriately. The case being that an application using I/O

throttling in one virtual guest operating system may detect that a hardware array is not busy,

but a second guest operating system on the same hardware platform may be processing a

very disk intensive operation. In that event disk contention would occur, bottlenecking the disk

intensive process originating from the second guest VM.

Specialized programs, such as V-locity™, are designed to coordinate defragmentation across

all VMs on a given hardware platform, eliminating potential resource contention issues.

virtual diSkS/partitionS:

Hypervisors implement parent/root and child partitions. The parent partitions host the

hypervisor itself, and the child partitions hosts the guest operating systems, using some form

of virtual disk.

Most hypervisor virtualization platforms also have a disk type that allows the guest OS to

bypass the host file system e.g. NTFS or VMFS. This pass-through/raw disk essentially allows

the guest OS direct access to the storage system e.g. a physical disk/disk array.

Commonly used, given the generally broader array of features and functionality available, are

virtual hard disks container files. Two popular data file formats are VMDK (virtual machine

disk), used by VMware solutions, and VHD (virtual hard disk) used by Microsoft, and licensed

by Citrix. In addition to the data container file, a virtual hard disk has small accompanying

descriptor/configuration files.

Virtual hard disks map to the virtualization platform’s root file system and are stored there as files,

for example VirtualFileandPrintSrv.vhd. That root file system then maps to the storage system.

12
Best Practices for eliminating fragmentation
with modern storage technologies

These virtual disk formats support what is called fixed/thick virtual disks. In this case the guest

OS provisions the entire logical volume(s) all up front. For example, a Windows Server Guest

OS is given a 10GB allocation. This translates to a roughly 10GB virtual hard disk file that

resides on the host file system. There are benefits to this format, but it can also lead to over-

provisioning, a situation where more space is reserved for a system than it may ever use. In

other words over-provisioning can lead to waste.

While the logical volumes of a fixed/thick disk are fully allocated, it does not mean that the

physical storage under the host file system is fully allocated at the time of creation (with the

exception of eager zeroed thick disk in VMware). That means that any type of file movement

on most fixed/thick disks can translate to new physical allocations on the disk/disk array. This

is not an issue in and of itself as a fixed/thick disk has by definition, the physical storage space

available, but it is something to be aware in certain environments.

Another type of virtual disk is called the dynamic or thin virtual hard disk. The difference

between a fixed/thick virtual disk and a dynamic/thin disk is that these types of disks can

grow, as needed, when needed. This just in time growth occurs with the data file (VMDK,

VHD) at the root file system, and simultaneously in the physical storage.

Over-subscribing storage means that dynamic/thin disks, as a collective whole, may

potentially grow larger than the host file system can support. A good analogy is an airline that

sells more tickets for a given flight than there are seats on the plane (oversell). The assumption

is that there will be some no shows or cancelations. It is risky, but increases the likelihood of

filling all the seats with customers.

The ability to oversubscribe combined with the just-in-time provisioning afforded with

dynamic/thin virtual disks eliminates guesswork in pre-determining how large a guest virtual

disk will grow, and the potential waste of space on a host file system. Needless to say

using a dynamic/thin type of disk requires very close administrative monitoring to ensure

that resources (space on that host file system) are always available for the guest systems.

Unpredicted or unnecessary growth in such a virtual disk can be very problematic, so it is

important to understand how the applications/usage that may cause growth in these guest

systems behaves.

13
Best Practices for eliminating fragmentation
with modern storage technologies

SnapShot, linked CloneS and redo/differenCing diSkS:

In a storage context, a “snapshot” is a stately point in time capture of data. Storing a snapshot

and making it available allows for recovery to a prior state, which effectively affords the ability to

undo all changes after the snapshot was taken (i.e. rollback). On a virtualization platform, when

virtual disk snapshot solutions are implemented the original disk becomes a read only disk, called

a parent. A linked clone/differencing disk is essentially an enhanced version of the snapshot disk,

allowing multiple VMs to share a common parent disk, where separate virtual disks (e.g. a linked

clone) contain the unique change-data for each separate guest VM. To that effect linked clones/

differencing disks, become a space saver, as a 20GB OS image can be shared rather than

redundantly duplicated in the host’s file system; quite handy for desktop virtualization.

As noted, with these unique virtual disk types, all write activity to the read-only “parent” disk,

is redirected to differencing disk(s), which are stored as separate files from the parent disk.

These types of virtual disks cannot recognize defrag related write activity at the guest OS,

to them it appears as new data writes that need to be captured. Therefore defragmentation

creates unnecessary growth of the differencing disk, and can potentially delete that

differencing data if thresholds are exceeded.

Defragmentation of a virtual disk with differencing data should only be performed prior to

creating the differencing disk or following a procedure to merge the differencing/snapshot

data back into the parent disk.

Also keep in mind that these virtual disk solutions do block level differencing, and will create

significant fragmentation of files (as the source file is a read only copy in a parent) and changes

to that file may be spread, block by block, across numerous virtual disk deltas. Performance

can degrade over time with these disk types.

From an optimization standpoint, there are certain precautions that must be taken with

differencing disks. Specialized programs, such as V-locity, that are designed to optimize

virtualization platforms automatically recognize differencing disks and apply the

recommended approach.

Summary:

Machine Virtualization offers new challenges to traditional defragmentation routines, but it

does not absolve the need to eliminate fragmentation. If anything, given the shared storage

infrastructure, fragmentation (which reduces disk I/O efficiency) becomes more of an issue.

This technology adds additional layers of abstraction adding to the “allocation tables that map

to allocation tables that map to allocation tables…” translation between each storage layer.

And, just as covered previously, none of these layers has the ability to map clusters back to

individual files in the above source file system(s).

File system drivers that prevent fragmentation at a source (the file system) with file writes offer

an excellent solution in a virtualized environments as they will not incur any added overhead

Most virtual disk formats

do not provide a means to

overlay actual virtual disk

storage against clusters on

the underlying host disk/file

system. In other words, a

request from the guest OS

for cluster 1 on the virtual

disk might translate to sec-

tors 7-8 of cluster 80 in the

virtual disk container file and

sectors 1-6 of cluster 200 of

the virtual disk container file.

14
Best Practices for eliminating fragmentation
with modern storage technologies

from after-the-fact removal of fragmentation. They allow for more efficient pass through of I/

Os to the underlying abstraction layers and ultimately the physical storage itself.

Recommendation: Prevent Fragmentation at the file system level in all instances, except as

noted above. It is also recommended to undertake a proper evaluation of the environment to

determine if defragmentation time frames are better suited to off-peak production hours for

traditional defragmenters (so they do not interfere with business needs), or use a specially

designed virtual platform disk optimization solution to automate and coordinate background

performance maintenance. If you use dynamic/thin virtual disks, it is recommended to check

with both your defragmentation software vendor, for proper configuration (e.g. disable file

placement features).

VIII. Defragmentation and Storage Area Networks (SANs)

overview:

A SAN affords the administrator the ability to make remote disks appear to be local. It does

not matter what protocol they use to connect; iSCSI, Fibre Channel, etc.

SAN storage units are referred to as LUNs. Originally the term LUN (Logical Unit Number) only

meant the SCSI disk address on an array for a particular disk, but it is now commonly used to

represent the physical disk array when it is implemented in a SAN as a logical volume(s).

There are a great many tangential implementations in SAN technology so this section will

focus on standard applications or usage. This does not, by any means indicate that a new, or

proprietary technology eliminates the fact that fragmentation impacts performance, they simply

aren’t relevant.

The statement that a SAN volume appears local to the Windows operating system is

a vital concept.

Storage
Cloud

15
Best Practices for eliminating fragmentation
with modern storage technologies

San Storage virtualization:

Storage virtualization involves the creation of a usually very large, logical-pool of data. Via

software, that pool appears to be physically located all on one server. In actuality, that data

may be located across hundreds of physical disks spread across dozens of servers. This is

the concept implemented by Storage Area Networks (SAN).

This technology essentially abstracts “logical storage” (what the operating system sees and

uses – i.e., the file system) from physical storage (the striped RAID sets). The key differentiator

in virtual storage is that the multiple physical storage devices (e.g. a RAID array) are combined

into one large grouping, on top of which a virtual storage container is created.

SAN file systems (a.k.a. cluster file systems) such as VMFS from VMware or EMC’s Celerra,

are a third and different category of file system known as shared-disk file systems and are

the backbone of storage virtualization (different from previously defined Local or Remote file

systems). An operating system defragmenter, only recognizes the “local” disk file systems

that it natively supports. Vendors of proprietary files systems typically include specialized

technologies to optimize performance. These file systems are the foundation for storage

virtualization. The specialized Diskeeper Server configured for SANs product is a file system-

level file defragmenter and data optimizer for SAN implementations. While it is important

to distinguish Diskeeper from any proprietary vendor tools for lower-level SAN architecture

optimization, these tools do not address the wasted resources and reduced disk efficiency

incurred from OS file fragmentation.

i /o mapping and redireCtion:

Storage virtualization uses metadata to properly channel I/O. Software on a storage virtualization

device (such as a SAN Switch) will translate logical disk locations to physical disk ones.

Here is an example:

1. A storage virtualization device gets a request for a logical location of LUN#1, LBA 32

2. It then performs a metadata lookup for that address and finds it actually maps to LUN#4,

LBA168.

3. The device then redirects the request to the actual physical location of the data

4. Once it retrieves the data, it passes it back to the originator without the originating request-

or ever knowing that the request was completed from a different location than what it knew.

The fact that there is not a one-to-one mapping of file system clusters to LBAs (due to LUN

virtualization) is not an issue. Logical, file system level fragmentation causes the operating

system to generate additional I/O requests to the virtualization software. Using metadata, the

software then redirects I/O from the logical disk to its physical location.

8. With disk arrays often abstracting LUNs out of large RAID sets or RAID Volumes, multiple LUNs can be presented from a single stripe set and presented to different hosts.

The Cluster Shared Volume

(CSV) feature for Windows

Server 2008R2 Hyper-V

effectively allows NTFS to

function as a cluster file

system. Defragmentation is

fully supported on CSVs.

The SAS (Serial Attached

SCSI) software does not

know what the total size

of a file will be when it is

created, therefore, it cannot

be contiguously allocated.

File fragmentation is a

problem because additional

file system activity must

take place to access a file

that is stored in multiple,

noncontiguous locations

on a volume. When

defragmenting a volume, all

the files on the volume are

rearranged so that each file

is in one contiguous extent.

 – HP

16
Best Practices for eliminating fragmentation
with modern storage technologies

The local disk file system (e.g. NTFS) does not know of, nor control the physical distribution

or location in a virtualized storage environment, and as a result of fragmentation, NTFS has to

make multiple requests regardless of the physical or virtualized storage environment.

In SAN file systems, block size (the smallest addressable virtual unit) is a configurable metric and

varies based on the software used. Vmware’s VMFS, for example supports 1MB to 8MB blocks.

Logical Cluster Numbers (LCNs) are a file system construct used to map a file on a volume

to LBAs. Disk Controllers take those logical blocks and make the appropriate translation to a

physical location. Disk controllers do not, no matter how “smart” they are, independently map

fragmented file I/O into consecutive or linear block requests. They cannot “pool” incoming

block-based data back into a file.

This means that regardless of the fact that the file system does not map directly to a physical

location, file system fragmentation will create the exact same kind of phenomenon on RAID as

it does on virtualized storage (multiple RAID arrays group together).

SANs can offer extremely efficient and high performing data storage, but it is not the job, nor

within the scope of ability for a SAN system (hardware or software) to address file system

level fragmentation. Proprietary technologies employed by one vendor can be more efficient

at retrieving data blocks than another. Architectures can vary as well. No matter how efficient

data retrieval can be, and how much physical disk limitations can be mitigated, the overhead

on the operating system that is retrieving the file is beyond the scope of SAN technology and

is impacted by file fragmentation.

uSing reSourCe SenSitive teChnologieS to throttle aCtivity:

As covered in the section on virtualization, defragmenters may offer technologies to monitor

I/O traffic, and throttle application related disk activity (i.e. defrag) until the I/O pipeline was

free. Again, decisions to throttle activity are dependent on counters returned from the

operating system on which the application is installed. In cases where multiple operating

systems (multi-headed) connect to common shared disks, as in a SAN, I/O throttling

techniques will not function appropriately. The case being that an application using I/O

throttling may detect that a shared disk array is not busy, but a secondary server also

using that same array may be processing a very disk intensive operation. In that event disk

contention may occur.

Recommendation: File system drivers that prevent fragmentation at the source (the file system)

with a file write offer an excellent solution in a SAN environment as they will not incur any

added overhead in after the fact removal of fragmentation.

We use it [Diskeeper]

on our big SQL box (8 way

processor, hundreds of gigs

of space on a SAN, 16 gigs

of RAM) and it has increased

our disk performance by a

factor of about 8 or 9. We

were looking at adding more

spindles to our SAN to help

with some disk I/O issues

we had, but this wonderful

software did it for us.

– Dave Underwood,

Senior Engineer,

CustomScoop

17
Best Practices for eliminating fragmentation
with modern storage technologies

Proprietary technologies such as InvisiTasking® technology, which eliminates overhead on

direct attached storage, will provide more effective resource-sensitivity for storage networks

demanding SANs, it is recommended to undertake a proper evaluation of the environment to

determine if defragmentation time frames are better suited to off-peak production hours.

CaChing:

More cache is always better. However, cache is far more expensive, and volatile, than

magnetic media. In some business cases a 99%+ cache hit ratio may be the mandate – at all

costs. That is addressed by spending and integrating a lot of cache through various tiers in

the storage infrastructure. However, most storage infrastructures can, or must, do with a lower

rate of cache hits. For data requests that miss cache and must be fulfilled from the disk, an

optimized disk subsystem is important. Even for environments that dictate very high cache hit

rates, the occasional miss is best mitigated by an optimized disk subsystem. And of course,

before data is placed in the cache it must first be read from the disk; a process slowed by

fragmentation.

thin proviSioning:

Earlier we described thin provisioning as it applied to a virtualization vendor’s host file system,

here we cover that technology’s use on physical storage as it applies to a SAN.

Given that allocated disk space often goes unused, oversubscription combined with Thin

Provisioning were technologies developed to make it appear more disk space existed virtually

so SAN storage can allocate physical space dynamically to the volumes that need it. Space in

the SAN file system is allocated on an as-needed and amount-needed basis in a storage pool

shared by multiple servers. Provisioning accommodates the unpredictability and allocation

of future storage growth needs and eliminates the need to assign storage to one volume/

computer when the system is built.

Many SAN solution providers provision space based on the Windows volume high water mark.

A high water mark, with respect to a volume in this definition, is the term that describes the

last written block of data (the highest used LCN on the volume). That high water mark always

increases and never decreases (on Windows), indicating less available space to the SAN. This

creates a problem in properly provisioning space.

If a file is written (or moved via defragmentation) to a higher LCN, the SAN will need to

provision space in the LUN to accommodate. That is true even if the file is only moved to a

high LCN temporarily.

The term “Thin on Thin”

refers to the use of thin

provisioning technology at

both the virtual platform and

physical storage level.

18
Best Practices for eliminating fragmentation
with modern storage technologies

Starting environment

defragmenter that moveS
data “BaCkward” (to high lCns)

If you implement thin provisioning, it is recommended to check with both your SAN

technologist and defragmentation software vendor, for proper configuration (e.g., disable

file placement features). Optimization with an automatic background defragmenter specially

configured for SAN environments is ideal.

defragmenting ContinuouS data proteCtion (Cdp)/SnapShot volumeS:

Data protection solutions seek to offer a copy of data either synchronously on every write

using a copy-on-write (COW) design, or asynchronously at some point in time. Similar to

file-based backup software, CDP offers full and differential approaches to data protection.

A copy-on-write design provides synchronous real time protection and recovery to any

committed state.

Depending on the implementation, software or hardware, these copies may be written into

a circular log/journal file, differencing area, or onto a separate volume/disk (e.g. split mirror/

snapshot mirror/clone).

19
Best Practices for eliminating fragmentation
with modern storage technologies

Generally a Full Copy/Split Mirror/Clone CDP implementation provides a one-time read-only

data source that is moved off to a secondary volume. Only the original source volume then

keeps all new incremental changes.

It is also possible that the original data volume inherits read-only status and snapshots,

again using copy-on-write, duplicate the “changes” off the primary data source into a special

change file or differencing area.

You may recognize the terminology used here from the earlier section on virtual disk types (i.e.

Differencing disks/linked clones). That is because the concept is essentially the same.

A common issue with most COW solutions is that they are unable to distinguish between

changes to data generated by applications, versus changes made to an application’s location,

as is done by a file system defragmenter. COW solutions that integrate with the Windows file

system, for example a provider that integrates with Microsoft’s Volume Shadow Copy Service,

are more likely to understand fragmentation. A proprietary solution is unlikely to be able to

recognize file movement from defragmentation.

Recommendation: Prevent Fragmentation at the file system level on snapshot/block-based

CDP volumes. Background defragmentation should be evaluated for occasional use during a

maintenance window or off peak time frame, though note it may increase a differencing area/

file or traffic between a source and clone disk (significant usually only for remote clones).

For file system-based CDP solutions (such as Microsoft’s VSS and third-party solutions

that integrate with its framework), prevent fragmentation at the file system level, and use

an advanced automatic background defragmenter which is pre-configured for snapshot

compatibility.

deviCe SpeCifiC moduleS (dSms) :

SAN vendors provide a DSM for fault tolerance and bandwidth optimization, but they do not

solve the issue of local disk fragmentation.

Typically an I/O request travels one path (as described earlier in this paper) from application

to physical storage location. DSM allows a vendor to design alternative “paths” to the

physical data storage in the event a component along the path breaks (e.g., a bad cable) or

bottlenecks under heavy load. In either of these events the DSM can re-direct the I/O down

another pathway. This is called a multipath I/O driver (MPIO). It is great for optimizing the

performance of block level requests generated by the file system, but cannot minimize the

overhead that file system occurs in generating multiple I/Os for one file object. It must accept

the multiple unnecessary I/Os and optimize the retrieval of those multiple requests as

best as possible.

We’ve seen a huge disk

performance gain…using

Diskeeper to defragment

all databases/images/

documents stored by our

clients, which include over

1.5 TB of SQL data and file

storage data. Data is stored

on an IBM FastT500 SAN

array on three 10-drive

nodes (600GB, 600GB,

1.2TB respectively).

– Doug Robb,

VirMedice. LLC

20
Best Practices for eliminating fragmentation
with modern storage technologies

MPIO (disk class drivers) reside below NTFS.sys in the I/O stack, and are reliant on IRPs

initially generated from the file system and passed down the stack. “Fixing” local disk

fragmentation is not the job of the SAN vendor, nor even their responsibility, as the issue

occurs are a higher level (closer to the requesting application) than a SAN is, or should be,

integrated with system I/O.

a QuiCk overview of file reQueStS through the windowS Storage StaCk9:

 • Application (e.g. SQL)

 • I/O Manager

 • NTFS.sys

 • Volsnap.sys

 • Disk.sys (e.g. SAN replacement of this driver such as MPIO)

 • Hardware

While SANs implementing DSM can distribute I/Os more efficiently than Direct Attached

Storage (DAS), fragmentation will still create application slows, as the operating system where

the requesting application resides, still has to generate more I/Os than it should, and that data

is still likely to be dispersed in a less than optimal set of locations on the storage array.

data optimization aCroSS San Storage tierS/SeCtorS of a raid array:

It is important to remember that defragmenters never move data to specific physical sectors

on a storage device. Defragmentation only moves files from file system clusters to new file

system clusters. How file system clusters map to physical sectors is addressed by non-

Windows components, and is beyond the scope of a defragmenter.

It is possible that defragmenters with poorly architected algorithms may move the same

allocated clusters (associated with files) over and over again. This can potentially trigger

block oriented storage systems into believing the blocks associated with those files contain

important data that should reside on faster storage tiers. Advanced defragmenters employ

efficient algorithms that dramatically minimize future defrag effort and activity.

Also note that advanced technologies, such as I-FAAST™ (Intelligent File Access Acceleration

Sequencing Technology) measure data transfer performance at the Windows volume level.

I-FAAST will then move frequently used data into regions on the volume determined to have

higher performance characteristic. Subsequently it moves stale data to slower access areas

of a volume. Technologies such as I-FAAST will provide enhanced value for static storage/

storage tiers where accurate measurements can be achieved at the volume level.

Recommendation: Prevent fragmentation at the file system level on SANs. Use only efficient

defragmenters which are natively configured to minimize file movement, and apply intelligent

file system-level optimization routines.

9. FAST I/O, cached-data and other intermediate drivers are not included, but are irrelevant for this discussion.

21
Best Practices for eliminating fragmentation
with modern storage technologies

IX. Defragmenting network attached storage (NAS)

Windows supports “remote file systems” just as it supports “local file systems” (e.g. NTFS.

sys). In Windows, the remote file system includes a client (requestor) and a server (provider)

component. The Windows “Workstation” and “Server” services make this remote

access function.

This remote file system (also called distributed file system) is the mechanism used when, as

an example, connecting over Ethernet to mapped shares on a file server. The protocol used

to communicate between the requestor and the provider in a Windows network is known as

Common Internet File System (CIFS), which is a Microsoft variant of IBM’s Server Message

Block. CIFS has many other Windows network uses, and while improving, some of its

limitations restrict usage in environments where remote data performance is vital. Hence, it is

one of the driving forces behind the creation of other technologies such as SAN and Network

Attached Storage (NAS).

A NAS box is essentially a disk array, with an operating system (Microsoft offers the Windows

Server Appliance Kit and Windows Storage Server/Windows Unified Data Storage Server) that

can be plugged into the network (/and SAN). It is a plug-and-play file server.

Fragmentation impedes NAS performance the same as it would a typical file server.

Using a network file system protocol, a Windows client (e.g. Windows 7) may map a drive

to a NAS device and store date there; data that will become fragmented. Unlike DAS/

SAN attached storage, NAS is considered a remote drive, and is therefore not available for

defragmentation by tools installed on/run from that remote Windows client.

Recommendation: Using a program installed on the Windows-based NAS device, prevent

fragmentation at the file system level, and use automatic background defragmentation for full

performance benefit. For NAS devices running non-Windows operating systems, check with

the manufacturer for any disk optimization recommendations.

22
Best Practices for eliminating fragmentation
with modern storage technologies

X. Conclusion

New storage technologies have absolutely improved storage performance, flexibility and

manageability, but they do not solve issues generated at the file system level, such as file

fragmentation.

As storage solutions and infrastructures have evolved, so have solutions to address

fragmentation. “Prevention is better than the cure” is a popular and very IT applicable idiom.

That philosophy, applied to preventing fragmentation with sophisticated new technology (i.e.,

IntelliWrite™ fragmentation prevention technology), is the ultimate solution to maximizing

performance of modern storage solutions.

IntelliWrite is a critical component in Diskeeper Server configured for SANs. The use of

Diskeeper Server pre-configured for SANs assures complete disk optimization while avoiding

negative impact on SAN infrastructures.

Physical storage devices and controllers will optimize the location of blocks across the

underlying physical spindles according to their proprietary methods, but none are involved

with how the file system requests I/Os. The need to optimize virtual disks, SAN, RAID, SATA,

SCSI, NAS, HHD, SSD devices continues today, just as it has in the past.

When bottlenecks occur in the disk subsystem, file fragmentation is a factor that should

always be investigated as a contributing factor. To gauge the impact of fragmentation, use

performance monitoring tools such as PerfMon, Iometer, or hIOmon. The appendix at the end

of this paper provides examples and links to these tools.

For all the technical data provided on why fragmentation is relevant more than ever with

new storage technologies, other real world factors make evaluating fragmentation a

worthwhile cause.

Primarily, investigating fragmentation is inexpensive; requiring only some investigatory time.

The evaluation software can be obtained for free, and the time required to test is far less than

that involved in evaluating hardware solutions. Licensing and managing defragmentation

software will be far less expense than hardware solutions and will likely provide a significant

and immediate return on investment.

NOTE: Diskeeper Administrator allows a storage administrator to quickly and easily institute

Diskeeper Server configured for SANs in their enterprise. The ability to customize policies

within Diskeeper Administrator prior to roll-out is critical to compliance with production

schedules without wasting time or resources – ensure that you establish a defragmentation

schedule aligned with SAN best practices.

We use Diskeeper

EnterpriseServer on our

main file server. This

particular system has

about 4-5 TB assigned to

it from our SAN and needs

constant defragmenting

due to heavy use.

– Martin Gourdeau,

Network Admin,

Electronic Arts

23
Best Practices for eliminating fragmentation
with modern storage technologies

Appendix A

gauging the impaCt of fragmentation:

PerfMon:

To determine fragmentation’s impact on a disk subsystem (single disk or RAID), you can

employ performance monitoring technologies. Window’s includes a built-in tool called

PerfMon that can collect and graph this data. Specifically you will want to direct it to the

PhysicalDisk object. Performance monitoring for purposes of determining event-based

changes (such as defragmentation) requires proper before (baseline) and after comparisons.

This means that a similar extended period (e.g. one week) must be compared to determine

improvement. No other changes, such as adding new hardware, can be introduced during the

test periods. The periods measured must cover, to the degree possible, the same work load.

Here is a sample scenario:

1. On a Friday afternoon, install, but do not activate, an enterprise-class disk defragmenter,

and run the tool’s native analysis functions.

2. Save the defragmenter’s analysis reports.

3. Start the PerfMon baseline on a Monday and let it run without any other hardware/system

settings changes for one full week.

 • Avg. Disk Queue Length (should have no more than 2 per spindle)

 • Avg. Disk Read Queue Length (used to further define disk queues)

 • Avg. Disk Write Queue Length (used to further define disk queues)

 • Avg. Disk Transfer/sec (should be less than 50-55 per spindle)

 • Avg. Disk Read/sec (used to further define transfer rate)

 • Avg. Disk Write/sec (used to further define transfer rate)

 • Split IO/sec (should be less than 10% of Disk transfers/sec value)

 • % Disk Time (should ideally be less than 55%, over 70% is typically an issue)

 • % Idle Time (to check legitimacy of % Disk Time)

4. Using the disk defragmentation software, run another analysis and save the results.

5. Activate the defragmentation tool the following Monday morning and let it run for

two weeks.

6. Using the disk defragmentation software, run the final “after” analysis and save the results.

24
Best Practices for eliminating fragmentation
with modern storage technologies

7. Compare (see figure below) the first and last week periods and note changes

(improvements) in the measured counters from week one (no defrag), to week three (defrag

complete and still active). The disk defragmenter’s reports will provide you data on the

changes to file fragmentation as part of this before-and-after comparison.

8. If desired, stop defrag operations for the fourth week, and continue to monitor disk

performance through week 5, to note reversal of achieved performance gains. Accompany

this with another disk defragmentation analysis and compare the results of that analysis to

data collected from week 3.

The handy Performance Monitor Wizard, available at Microsoft’s website can ease the

learning curve in setting up and using PerfMon.

No counter will independently determine the impact of fragmentation. If the disk is fragmented,

many of these counters will show metrics higher than acceptable levels.

hIOmon™ by HyperI/OSM

HyperI/O, has developed a full “file I/O performance” evaluation kit, targeted specifically at

determining the impact of fragmentation on production systems. Due to its robust feature set,

this is a recommended product/method for experienced Server Administrators familiar with

benchmarking and performance evaluations.

Iometer

An additional benchmarking tool is Iometer/Dynamo (distributed as binaries). It is an open

source I/O subsystem measurement and characterization tool. Iometer/Dynamo can be

used to benchmark test environments. The key to benchmarking fragmentation with this

toolset is ensuring the test file is created in a fragmented state. This can be accomplished by

fragmenting the free space on a test volume prior to use of this tool.

average diSk Queue length

25
Best Practices for eliminating fragmentation
with modern storage technologies

Appendix B

referenCeS:

VMware (KB-1014) - Windows Virtual Machine Blue Screens When I Use SAN LUNs

Microsoft (Disk Fragmentation impacts RAID) - Windows Server™ 2003: Improving

Manageability and Performance in Hardware RAID and Storage Area Networks

HP - Configuring Windows Server 2003 with HP Integrity Servers with SAS

Diskeeper Corporation - How NTFS reads a file

Diskeeper Corporation – Virtualization and Disk Performance

EMC – Backup Storage Solutions for CLARiiON and Symmetrix

SQL Knowledge - How to Monitor I/O Performance

Diskeeper Corporation – File Fragmentation: SAN/NAS/RAID

Iometer.org – Downloads and documentation

Hyper I/O - Fragmented File I/O Metrics

VMware – Layers of Virtual Storage (abstraction)

BiBliography:

RealTime Publishers – The Shortcut Guide to Managing Disk Fragmentation (Mike Danseglio)

Diskeeper Corporation – FRAGMENTATION: the Condition, the Cause, the CURE (Craig Jensen)

Microsoft Press – Microsoft Windows Internals (Mark Russinovich, David Solomon, Alex Ionescu)

O’Reilly – Using SANs and NAS (W. Curtis Preston)

Diskeeper Corporation 7590 North Glenoaks Boulevard Burbank, California 91504-1052, USA
Toll Free 800-829-6468 Phone 818-771-1600 Fax 818-252-5514 www.diskeeper.com

Counting over 80% of the US Fortune 1000 as volume license customers, and with over two decades of innovation in system performance and reliability (focused on storage performance), Diskeeper
Corporation is a recognized expert in the storage performance industry.

© 2008-2011 Diskeeper Corporation. All Rights Reserved. Diskeeper Corporation, IntelliWrite, InvisiTasking, I-FAAST, and Diskeeper are registered trademarks or trademarks owned by Diskeeper Corpora-
tion. All other trademarks are the property of their respective owners.

